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ABSTRACT

The concept of weighted distributions can be traced to the study of the

effects of methods of ascertainment upon the estimation of frequencies by

Fisher in 1934, and it was formulated in general terms by the author in a

paper presented at the First International Symposium on Classical and

Contagious Distributions held in Montreal in 1963. Since then, a number of

papers have appeared on the subject. This paper reviews some previous work,

points out, through appropriate examples, some situations where weighted

distributions arise and discusses the associated methods of statistical

analysis.

The importance of specification of the class of underlying probability

distributions (or stochastic model) in data analysis based on a detailed

knowledge of how data are obtained is emphasized. Failure to take into

account the conditions of ascertainment of data can lead to wrong conclusions.

Keywords and Phrases: Damage models, nonresponse, probability sampling,

quadrat sampling, size biased sampling, truncation, weighted distributions.
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1. IMPORTANCE OF SPECIFICATION

For drawing valid inferences from observed data through statistical

methodology it is necessary to identify the proper sample space (all possible

outcomes) and specify the class of probability distributions (the model) to

which the true distribution of the observations belongs. More precisely, the

observed data set x has to be considered as the result of a random experiment,

I.e., as a realization of a random variable ((ry) X taking values in a space

X and subject to a probability distribution P belonging to a specified class

P. Such a knowledge enables us to write down the probabiity (or probability

density) of x for given P, which we write as 1(PJ x). The function A'x)

defined over P for given x, called the likelihood, together with aly apriori

information we may have on P forms the basis of statistical inference. The

specification of P, or the model as it is sometimes called, is thus a datum of

the problem of inference. However, not much attention is given to this

problem in statistical theory or practice despite the emphasis given to it by

the pioneers in statistics like Karl Pearson and R. A. Fisher. Wrong

specification may lead to invalid inference, which is sometimes referred to as

a third kind of error, the first two being the familiar ones associated with

the Neyman-Pearson theory of testing of hypotheses.

It is almost axiomatic to say, although it may need some effort to

demonstrate, that inference based on specification PI is possibly more precise

than that on P2 if P,1  P2 provided P includes the true distribution. It is

therefore of considerable value to specify the smallest possible set. (See

Althu, 1984; Bishop, Fienberg and Holland, 1975, p. 313). Perhaps past

experience can be of help in the choice of such a set. But it should also be

possible to start with a wider set and narrow it down by using the observed
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data themselves, although the appropriate methodology for this purpose is not

fully developed. On the other hand, statisticians seem to be content with

studies on robustness, i.e., in determining the widest class P for which a

given statistical procedure is valid.

The problem of specification is not a simple one. A detailed knowledge of

the procedure actually employed in acquiring data is an essential ingredient

in arriving at a proper specification. The situation is more complicated with

field observations and nonexperimental data where nature produces events

according to a certain model, which are observed and recorded by

investigators. There does not always exist a suitable sampling frame

necessary for the application of the classical sampling theory. One needs to

work with visibility analysis instead. In practice, it is not always possible

to observe and record events as they occur. For instance, certain events may

not be observable by the method we employ and therefore missed in the record

(truncated, censored, and incomplete samples). Or an event may be observable

only with a certain probability depending on the nature of the event such as

its conspicuousness and the procedure employed to observe it (unequal

probability sampling). Or an event may change in a random way by the time or

during the process of observation so that what comes on record is a modified

event (damage models). Sometimes, events produced under two or more different

mechanisms with unspecified relative frequencies get mixed up and brought into

the same record (outliers, contaminated samples). In all these cases, the

specified class P for the original events (as they occur) may not be

appropriate for the events as they are recorded (observed data) unless it is

suitably modified.

%.I
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In a classical paper, Fisher (1934) demonstrated the need for such

adjustment in specification depending on the way the data are ascertained. In

extending the basic ideas of Fisher, the author (Rao, 1965) introduced the

concept of a weighted distribution as a method of adjustment applicable to

many situations. In the present paper we discuss, through suitable examples,

some procedures for making adjustments in specification based on methods of

ascertaining data.

Although I have mentioned only field observations which are collected

without the help of a suitable sampling frame, I must emphasize that similar

problems of specification arise with data collected in large scale sample

surveys and also with data acquired through field and laboratory experiments.

Survey practioners are faced with problems of incomplete frame which raise

questions of representativeness of a sample for a given population (see

Kruskal and osteller, 1980 and references therein), nonresponse which raises

questions of repeated visits to sampled units, substitution of nonresponding

units by others with possibly similar characteristics, and imputation of

values (Fienberg and Tanur, 1983; Fienberg and Stasny, 1983; Rubin, 1976,

1980), and nonsampling errors which raise questions about their recognition,

detection, measurement and making adjustments in expressing precision of

estimates (Mahalanobis 194; Mosteller, 1978). Similarly in design of

experiments, difficulties in random allocation of treatments and choice of

controls in field trials, pooling of evidence from different experiments

conducted over space and time and missing values (drop outs) introduce

additional uncertainties in statistical inference and interpretation of

results for practical use or policy purposes (for typical problems and

references see Fienberg, Singer and Tanur, 1984; Neyman, 197T).

O.
.1
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2. TRUNCATION AND CESORING

Some events, although they occur, may be unascertainable so that the

observed distribution would be truncated to a certain region of the sample

space. An example is the frequency of families with both parents heterozygous

for albinism but having no albino children. There is no evidence that the

parents are heterozygous unless they have an albino child, and the families

with such parents and having no albino children get confounded with normal

families. The actual frequency of the event 'zero albino children' is, thus,

not ascertainable. Adjustment to the probability distribution applicable to

observable events in such a case is simple.

In general, if p(x,e) is the 2 (probability density function), where

6 denotes unknown parameters, and the rX X is truncated to a specified region

T r X, then the MM of the truncated random variable 3Y is

pw(x,e) = w(x,T)p(x,B) t- u(T,e) (2.1)

where w(xT) = 1 if x e T and = 0 if x $ T and u(T,e) = E[w(X,T)]. If

x1 , . . . Xn are independent observations subject to truncation, then the

likelihood is

P(Xle) ... P(Xn, e) . (u(T,e)]n. (2.2)

In some cases we may have independent observations x1 , . ..I n arising from a

truncated distribution in addition to a number m (and not the actual values)

of observations falling outside T. Then the likelihood is

(n + m)l
ml P(Xl16) ... P(Xn, e)[1 u(T,e)] m .  (2-.3)

A more complicated case is the following.

-j---px,: * PX,)[ (TeJ.n23
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Suppose that we have a measuring device which records the time at which a

bulb fails. If we are experimenting with n bulbs in a life testing problem

using a measuring device which may itself fail at a random time, then the

observations would be of the type

X1 ,...,xnl, n2, n3  . (2.4)

where xl,...,xnl are the life times of nj bulbs recorded before an unknown
time point T at which the measuring device failed, n2 is the number of bulbs

that failed between T and To, the known time at which the experiment was

terminated, and n3 is the number of bulbs still burning after To . Let

wl(T,e) z P(x S T), w2 (T,e) z P(T < x S TO), w3 (T,9) = 1-wl(T,e)-w2(T,e).

Then the likelihood based on the data (2.4) is

n P(3! XP) ... P(Xnl6)[w2(T,e)] 2[w3(T,e) n3 (2.5)

where T is unknown besides the basic parameters S. Inference on T and 8 based

on (2.5) does not seem to have been fully worked out but could be developed on

standard lines.

- The expressions (2.2), (2.3), and (2.5) are simple examples of weighted

distributions, whose general definition is given in Section 3.

0

3. WEIGHTED DISTRIBUTIONS

*0 In Section 2, we have considered situations where certain events are

unobservable. But a more general case is where an event that occurs has a

certain probability of being recorded (or included in the sample). Let I be a

r with p(x, e) as the dL, and suppose that when X z x occurs, the probability

of recording it is w(x, a) depending on the observed value x and possibly also

S °
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on an unknown parameter a. Then the . of the resulting rv XW is

pw(x,0,a) = w(x,a)p(x,e) 1 E[w(X, c)]. (3.1)

Although in deriving (3.1), we chose w(x,a) such that 0 S v(x,a) . 1, we can

define (3.1) for any arbitrary non-negative weight function w(x,a) for which

E[w(X,a)] exists. The distribution (3.1) obtained by using any non-negative

weight function w(x,a) is called (see Rao, 1965) a weighted version of p(x,e).

In particular, the weighted distribution

pW(x,e) : I xp(x,e) -t- E[ x1]  (3.2)

where IxI is the norm or some measure of size of x is called the size biased

-" distribution. When x is univariate and non-negative, the weighted distribution

p(x, 8) = x p(x, e) -- E(X) (3.3)

is called length (siZe) biased distribution. For example, If X has the

logarithmic series distribution
r

-rlog(1 - r = 1, 2, ... (3.4l)

then the distribution of the size biased variable is

r - a), r = 1, 2, ... (3.5)

which shows that Xw - 1 has a geometric distribution. A truncated geometric

distribution is sometimes found to provide a good fit to an observed

distribution of family size (Feller, 1966). But, if the information on family

size has been ascertained from school children, then the observations would

have a size biased distribution. In such a case a good fit of the geometric

distribution to the observed f mily sizes would indicate that the underlying

distribution of family size is, in fact, a logarithmic series.
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Table 1 gives a list of same basic distributions and their size biased

forms, it is seen that the size biased form belongs to the same family as the

original distribution in all cases except the logarithmic series (see Rao,

1965; Patil and Ord, 1975; Janardhan and Rao, 1983 for characterizations and

examples of size biased distributions).

4

.4

4

-. 4

.~.
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Table 1. Certain Basic Distributions and their Size-Biased Forms

Random Variable(rE) 2V=) Size-biased rX

Binomial, B(n, p) n pXC1 - )nx 1 + B(n - 1p

Negative Binomial, k + x:-:-NB(k,p) qrpk I + NB(k + 1,p)
~x

Poisson,Po(N) eXx/xl 1 + Po(A)

"' Logarithmic series,
L(a) (-log(1 ))-lax/X + NB(1,a)

Hypergeometric,
H(n, M, N) - + H(n - I,M - IN - 1)

Bimonial beta, Inj +BB(n,a,y) )(c o x, y + n- X)/S(a,y) 1 + BB(n- 1,a,y)

Negative binomial k x -
beta, NBB(k,ca,y) 5(c x, y+ k)/O(a,y) 1 + NBB(k 1,ry)

Gamma, G(c,k) kxk-le-aX/r(k) G(a,k 1)

Beta first kind,
Z -1 -1

.,-+BI(0,Y) x i1( -~ x'/ B(6 ,') BI(6; + 1,Y)

Beta second kind,"""B2 ( '6 xs 1 (1 + x)-/ B(S , y " ) B2(6 + 1,7" 6 1)

Pearson type V,
Pe (k) x exp(-x "1)/r(k) Pe(k - )

:- "Pareto, Pa(a,y) y Ox-('(+,x a Pa(a, y I )

Lognorlal, 2
LN(po (2-c x- exp ( ,a x u 2 )

a r2

• . **% .. . , ..
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An example of weighted distributions arises in sample surveys when unequal

probability sampling or I= (probability proportional to size) sampling is

employed. A general version of the sampling scheme involves two r's I and Y

with =, p(xy,e) and a weight function w(y) which is a function of y only

giving the weighted .

pw(x,y,6) w(y)p(x,y,) -t E[w(Y)]. (3.6)

In sample surveys we obtain observations on (Xw,Yw) from the 2C (3.6) and

draw inference on the unknown parameter 6.

It is of interest to note that the marginal 2CL of Xw is

* pW( x ,e) = w(xe)p(x,e) +E[w(X,O)] (3.7)

which is a weighted version of p(x,6) with the weight function

w(x,O) Z fp(ylx)w(y)dy (3.8)

which may involve the unknown parameter B.

here is an extensive literature on weighted distributions since the concept

was formalized in Rao (1965), which is reviewed with a large number of

references in a paper by Patil (1984) with special reference to ecological

work. Reference may also be made to two earlier contributions by Patil and

Rao (1977, 1978) and Patil and Ord (1975) which contain reviews of previous

work and details of some new results.

In the next sections, we consider several examples where weighted

'. distributions are used in the analysis of data.



-"- ii. DIFFERENTIAL PRESERVATION OF SKULLS

The following problem arose in the analysis of cranial measurements. A

sample of skulls dug out from ancient graves in Jeel JMgyvj, Africa, consisted

of some well-preserved skulls and the rest in a broken condition (see

Mukherji, Trevor and Rao, 1955). On each well-preserved skull it was possible

to take four measurements, C (capacity), L (length), B (breadth), and H

(height), while on a broken skull only a subset of L, B, and H and no C could

be measured. The observed data, thus, consisted of samples from a four

variate population with several observations missing. There were some sets

with all the four measurements C, L, B, H, and some with 1 or 2 or 3 of the

measurements L, B, and H only. The problem was to estimate the mean values of

C, L, B, and H in the orig±nal population of skulls from the recovered

fragmentary samples. In a number of papers which appeared in the early issues

- Of BLoerka, it was the practice to estimate the unknown population mean

value of any characteristic, say C, by taking the mean of all the available

measurements on C. An alternative to this, which is often recommended, is to

compute maximum likelihood estimates of the unknown mean values, variances,

and covariances by writing down the likelihood function based on all the

available data assuming a four variate normal distribution for C, L, B and H
o

and using the derived marginal distribution for an incomplete set of

measurements. This is based on the namat±I.n that each skull admitting all

the four measurements or ar subset of the four can be considered as a random

sample from the oriLsna population of skulls. Is this assumption valid?

It is a common knowledge that a certain proportion of the original skulls

S -gets broken depending on the length of time and depth at which they lay

buried. Let w(c) be the probability that a skull of capacity c is not broken
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and p(c,e) be the d of C in the original population. hen the L of C

measured on well-preserved skulls is

w(c)p(c,e) - E[w(C)]. (4.1)

If w(c) depends on c, then the observed measurements on C cannot be considered

as a random sample of C from the Vr±ZM1. population. Further, if w(c) is a

decreasing function of c, then there will be a larger representation of small

skulls* among the unbroken skulls, and therefore the mean of the available

measurements on C will be an underestimate of the mean capacity of the

original population.

Is there any evidence that w(c) depends on c? To answer this question, the

regression of C on L, B, and H (in terms of logarithms) was estimated from the

data sets where all the four measurements were available and used to predict

the mean capacity of broken skulls by substituting the observed averages t, R,

and IT of broken skulls in the regression equation. At least in two series of

cranial measurements, (see Rao and Shaw, 1948; Rao, 1973, p. 280) it was

found that the average measured capacity of unbroken skulls was smaller than

the estimated average capacity of broken skulls. This provided some evidence

about the differential preservation of skulls with smaller skulls having a

higher chance of remaining unbroken.

This finding invalidates the assumption that skulls providing all the four

measurements is a random sample from the original population of skulls. The

-- associated with these measurements is more appropriately (4.1) which is a

*.. weighted version of the original 2C with an unknown weight function.

Presumably, the = associated with observations on any subset of L, B, and H

will again be a weighted Dd with a weight function depending on the degree of



*- . -,-, -, * , -, -, .- , ..- - "

13

damage to a skull. The expression for the correct likelihood will then depend

4 on the original =d and the probabilities of different degrees of damage as

assessed by subsets of measurements that can be taken on a skull, which are

likely to be unknown. Is there a reasonable solution to the problem of

estimation of mean values in a situation like the above?

There are several possibilities of which the following procedure for

estimating the mean of C appears to be a natural one. We use the complete

-- sets of measurements, C, L, B and H, on unbroken skulls to compute the

regressions of C on different subsets of L, B and H. Using the appropriate

regression function, we estimate (predict) the missing value of C for each

broken skull. Then an average is taken of all the measured and estimated

values of C. Such an average is likely to be a valid estimate of the mean of

C. The estimation is based on the assumption that the complete sets of

measurements (C, L, B, H) can provide valid estimates of relationships like

the regression functions of C on L, B, H and its subsets, although they are

biased samples from the original population. Similar methods can be used to

estimate the mean values of L, B and H.

Paleontologists compare the characteristics of fossils of long bones and

* cranial material discovered in different parts of the world to trace the

evolutionary history of hcminids. Such studies based on physical measurements

may be misleading as the discovered fossils may not be representative samples

from the original populations due to differential preservation of skeletal

material. It is gratifying to note that attempts are being made to compare

the fossils in terms of some basic chemical measurements which are not likely

to be subject to the phenomenon of differential preservation.

0° -
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5. ENQUIRT THROUGH AN OFFSPRING

In genetic and soojo-psychological studies it is the common practice to

locate an abnormal individual and through him or her collect information on

the status of brothers and sisters, parents, uncles, and aunts. From such

-data estimates are made of the incidence of abnormality in families by sex and

parity of birth. A family is the basic unit whose characteristics may have a

specified distribution. But our method of ascertaiment gives unequal

probabilities to families depending on the mechanism inherent in the selection

of an abnormal family member. Thus, the distribution applicable to observed

data on families is a weighted version of the distribution specified for the

f amilies. We consider s0ne examples, discuss the nature of the problems

involved in each case, and suggest possible solutions.

5.1 TOO MANY MALES?

During the last few years, while lecturing to students and teachers in

different parts of the world, I collected data on the numbers of brothers and

sisters in the family of each individual in the audience. The results are

summarized in Tables 2, 3, and 4. The data frum the male respondents given in

- Tables 2 and 4 show that the ratio of B, the total number of brothers,

*': including the respondents, to B + S, the total number of brothers and sisters

is much larger than half in each case indicating a preponderence of male

children in the families of male members of the audience.

V./.
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Rao (1977) showed that the appropriate model for the distribution of

brothers and sisters of male respondents is size biased binomial so that the.c.

probability of r brothers and (n - r) sisters in a family of size n is

r n) r(, )n-r E(r) = 1 rr-1( _,)n-r (5.1.1)

where 7r is the probability of a male child. Under this hypothesis we find

that

E (5.1.2)

where k is the number of male respondents, so that (B - k)/(B + 3 - k) is an

estimate of 7r, and

[B- k - (B + S- k)w 2

:"(B 3 - k)n(1 - it) (5.1.3)..

1 3
has an asymptotic chi-square distribution on 1 degree of freedom. Similar

results hold for the data from female respondents in Table 3. It is seen from

"'" the chi-square values in Tables 2 and 3 that the data collected from the

students are consistent with the hypothesis of size biased binomial with w =

0 1/2.

The situation is somewhat different in Table 4 relating to data from the

*0 professors. The estimated It is more than half in each case and the chi-square

values are high. This implies that the weight function appropriate for these

data is of a higher order than r, the number of brothers. A possible

4. sociological explanation for this is that a person coming from a family with a

larger number of brothers tends to acquire better academic qualifications to

.A-. " " A
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compete for jobs l

The following example on observed sex ratio is illuminating. In a survey of

fertility and mortality, Dandekar and Dandekar (1953) gave the distribution of

brothers (excluding the informant) and sisters, and sons and daughters as

reported by 1115 'male heads,' contacted through households chosen with equal

probability for each household. It may be observed that in a survey of this

type, a family with r brothers gets a chance nearly proportional to r, and the

conditions for a weighted binomial with w(r) = r holds for the number of

brothers in a family. Yet we find from Table 5 that the total number of

brothers 1325 (excluding the informants) is far in excess of the number of

sisters, 1014 giving

2 Z (1325 - 101)2

1325 + 1014, = 11.35

which is very high on 1 degree of freedom. Is the theory of size biased

binomial wrong?

But it is clear from Table 5 that the disproportionate sex ratio is confined

to the age groups above 15-19 years and the same phenomenon seems to occur in

the case of sons and daughters. There is perhaps an underreporting of sisters

and daughters who are married off due to a superstitious Custom of not

including them as members of the household. Underreporting of female members

is a persistent feature of data on fertility and mortality collected in

developing countries.

.. ...-...-...- -....:-. ,-.,..,..- --.._-.... ........,,,.' ."...j,.',... : ' ' ;-. V ': ? ': I
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Table 2. Data on male respondents (students)

(k =number of students, B = total number of brothers including the
respondent, S = total number of sisters).

Place and year k B S H 2

Bangalore (India, 75) 55 180 127 .586 .496 .02

Delhi (India, 75) 29 92 66 .582 .490 .07

Calcutta (India, 63) 104 414 312 .570 .498 .04

Waltair (India, 69) 39 123 88 .583 .491 .09

Ahmedabad (India, 75) 29 84 49 .632 .523 .35

* Tirupati (India, 75) 592 1902 1274 .599 .484 .50

Poona (India, 75) 147 125 65 .658 .545 1.18

Hyderabad (India, 74) 25 72 53 .576 .470 .36

Tehran (Iran, 75) 21 65 40 .619 .500 .19

Isphahan (Iran, 75) 11 45 32 .584 .515 .06

Tokyo (Japan, 75) 50 90 34 .725 .5140 .49

Lima (Peru, 82) 38 132 87 .603 .519 .27

Shanghai (China, 82) 74 193 132 .5914 .47 .67

Columbus (USA, 75) 29 65 52 .556 .409 2.91

College St. (USA, 76) 63 152 90 .628 .497 .01

Total 1206 3734 2501 .600 .503 0.14

0
*Estimate of w under size biased bincmial distribution

dr %+

%* %

L- *. *..*:. . ! -



18

Table 3. Data on female respondents (students)

Place and year k B 3

... .'

Lima (Peru, 82) 16 37 48 .565 .464 .36

"'- Los Banos (Philippines, 83) 44 101 139 .579 .485 .18

Manila (Philippines, 83) 84 197 281 .588 .500 .00

Bilbao (Spain, 83) 14 19 35 .576 .525 .10

Total 158 354 503 .587 .493 .11

Table 4. Data on male respondents (professors)

Place and year k B S X2

State College (USA, 75) 28 80 37 .690 .584 2.53

Warsaw (Poland, 75) 18 41 21 .660 .525 2.52

Poznan (Poland, 75) 24 50 17 .746 .567 1.88

* Pittsburgh (USA, 81) 69 169 77 .687 .565 2.99

Tirupati (India, 76) 50 172 132 .566 .480 .39

Maracaibo (Venezuela, 82) 2 95 56 .629 .559 1.77

. Richmond (USA, 81) 26 5T 29 .663 .517 .03

Total 239 66 369 .612 .535 3.95

O..

S

-"

-.

-. - . q .°-.



* ~ ~ ~ ~ i- *. --. - -. *. -

19

Table 5. Distribution by age of brothers, sisters, sons and daughters

Dandekar and Dandekar (1953)

age-group brothers sisters sons daughters

o- I 5 10 357 348

5- 9 27 31 330 354

10-14 63 62 305 226

15-19 87 85 208 190

......................... ................................. . ..... *** 4***V* * ** **V

20-24 155 100 167 130

25-29 181 130 85 63

30-31 156 130 29 33

35-40 179 123 18 16

110-114 1116 105 13 5

rest 336 228 21 10

total 1325 1014 1533 1375

5.2 ABINISM

We introduce a general model which would be useful in genetic studies.

Let 7r and '2 be the probabilities that a male child and a female child

being an albino respectively. Then the probability that a family of n

children has r1 males of whom t1 are albinos and r2 females of whom t 2 are

-.

-". **:. . .," ' ' ' : *-*'"-*-** , * -'.** -V'-**'-*" . ' ","". ,". ,"-. "-,".". . ,",". ":" "; ".". "' '.'-.?.
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albinos is

p(rl, t1; r2, t2 ) = 72 2 (5.2.1)

( (t t2

where 1= 1 -i1 and 02 = 1 7 r2 ,and the probability of a child being a male

or a female is taken as half.

There are a number of ways in which we can introduce probabilities of

selection of affected families. We consider some models which are extensions

of those suggested by Fisher (1934) and Haldane (1938).

Introducing a and 8 = 1 - a as relative probabilities of observing a male

* or a female albino, we may consider a mixture of two size biased

distributions.

~~~~~~pw( 
r t j; r , 2) = \ n r +  - 2 ~ t ; =

2 t2

pw~~r1,~ t1  r, t2  r.j2 p(rl, tj; r2 , t2) (5.2.2) 5

as the appropriate distribution of the observed vector (r 1 , tl, r2 , t2 )- If we

have data on (r 1 , t1 , r 2 , t 2 ) from N ascertained families, we can write down

the likelihood using the expression (5.2.2) and estimate the parameters a, r1

and '2. Alternatively, we can use the method of moments, using the statistics

ZtI , t2 , and ZrI to estimate the unknown parameters.

I = 72= 7, the expression (5.2.2) reduces to

2nWatl 
+ t2)p(rl, tl; r2 , t2) 

(5.2.3)

tt

and the estimates of a and IT can be obtained from the equations

I. 57-
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+ 1 (nL - 1)

T1 W (5.2.4)

E2 + 2 E(ni - 1)

where k is the number of families, nf is the number of cildre n the i-th

family and T1, and 12 are average numbers of male and female albino children in

a family.

. Another model is as follows. Let P1I and P 2 be the probabilities of

observing a male and a female albino respectively. Then the probability that

a family with n children having t1 male albinos and r, - t1 normal males, and

'.-:: t 2 female albinos and r 2 - t 2 normal females, is investigated s1 times by

observing a male albino and 32 times by observing a female albino is

Pl1 (1- ( (1- p t; r2 , t2 ). (5.2.5)

Since a family is not investigated unless at least one of tI and t 2 is

different from zero, the effective distribution for the observed data is

(5.2.5) normalized by the dividing factor [1 - (1 - o)n] where
'"

P = (P1 , + P2 2)/2. The method of estimation of pl, P2 1 n1 and w2 when we

have the additional information on the number of times each family is

* investigated is discussed in detail in Rao (1965).

In case a faily is investigated only once although more than one abnormal

child in the family is observed the appropriate distribution is

(1 - (1 - p1)t1(1 - 2 ]p(r 1 , t1 ; r2, t2) [ [1 - (1 - o)n ] (5.2.6)

where P = ( 1 pl + t2 P2)/2. If 1 = p2 =p and 7r, 2 then the

. I
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expression (5.2.6) reduces to

) - - n1 ,)tl+t 2  , -t1-t2
1 - (1 - p)n tl1 (r1 - tl)lt 2 r2  t2)1 . (5.2.7)

If sex is ignored then (5.2.7) becomes

4t

1 0- - P)t n1

1 - (1 - p)n t (5.2.8)

where t i t1 + t2 , which is the expression used by Haldane (1938).

We have considered three different models (5.2.2), (5.2.5) and (5.2.6) for

the probability of selection of a family. In the case where we have

information only on the nuber r of abnormal children in a family of size n

without ary sex distinction we may consider a weighted binomial distribution

w(r) n rrn-r + E[w(r)] (5.2.9)
r

with three possible alternatives for w(r)

w(r) = r (5.2.10)

= r , (a unknown) (5.2.11)

= 1 - (1 - 0)
n, (p unknown). (5.2.12)

The maximum likelihood method of estimating a and it under the model (5.2.9,

5.2.11) is discussed in Rao (1965), and of P and T under the model (5.2.9,

5.2.12) in Haldane (1938). To demonstrate the relevance of the weight

function (5.2.11), we compare in Table 6 the observed data on frequencies of

albino children in families of different sizes with the expected values under

the two different weight functions w(r) = r and w(r) a r1/e2 choosing ,T 1/4.

It is seen that the weight function w(r) = rI/2 provides a better fit.

9A-s.5.

° ~ ...... ' *'
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Table 6. Observed and expected frequencies of albino children for
each family size (n)

(expected (1) for wr = r and expected (2) for Wr =r

n n=2 n=3 n=1 n=5
no. of obs- expected obs- expected obs- expected obs- expected
albinos erved erved erved erved

(1) (2) (1) (2) (1) (2) (1) (2)

1 31 30.00 32.37 37 30.93 35.81 22 21.10 26.07 25 19.00 24.93
2 9 10.00 7.63 15 20.63 16.88 21 21.09 18.43 23 25.31 23.50

3 3 3.44 2.30 7 7.03 5.02 10 12.65 9.59

41 0 0.78 0.48 1 2.81 1.85

5 1 0.23 0.13

n 6 n 7 totalIxno. ofalbinos obs- expected obs- expected obs- expectedMis erved erved erved

(1) (2) (1) (2) (1) (2)

1 18 12.58 17.46 16 8.21 11.98 1119 121.82 148.62

2 13 20.96 20.58 10 16.37 16.91 96 114.36 103.98
"" 3 18 13.98 11.20 14 13.611 11.53 47 50.714 39.641

11 3 4.66 3.23 5 6.06 4.43 9 111.31 10.00

5 0 0.77 0.48 1 1.51 0.99 1 2.51 1.61

6 1 0.05 0.03 0 0.20 0.12 1 0.25 0.15

0 0.01 0.01 0 0.01 0.01

.°o.
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For a general discussion of the type of problems discussed in this section,

and a few other models for selection probabilities, the reader is referred to

Stene (1981) and other references mentioned in that paper. For estimation of

a and w in the model (5.2.9, 5.2.11), reference may be made to Rao (1965).

5.3 ALCOHOLISH, FAMILY SIZE AND BIRTH ORDER

Snart (1963, 1969) and Sprott (1969) examined a number of hypotheses on the

incidence of alcoholism in Canadian families using the data on family size and

birth order of 242 alcoholics admitted to three alcoholism clinics in Ontario.

The method of sampling is thus of the type discussed in Sections 5.1 and 5.2.

One of the hypotheses tested was that "larger families contain larger number

of alcoholics than expected." The null hypothesis was interpreted to imply

that the observations on family size as ascertained arise from the weighted

distribution

np(n) ~- E(n), n = 1, 2, ... (5.3.1)

where p(n), n 1 1, 2, ... is the distribution of family size in the general

population, IngL U families with no alcoholics. It may be noted that the

distribution (5.3.1) would be applicable if we had observed an individual

(alcoholic or not) at random from the general population and ascertained the
0J

size of the family to which he or she belonged. It needs some argument to

show that the same distribution holds for family size ascertained by observing

the alcoholic individuals only. 7he following justification of (5.3.1) makes

use of an interpretation of the null hypothesis that is being tested.

.I
.1
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Let r be the probability of an individual becoming an alcoholic and suppose

that the probability that a member of a family becomes an alcoholic is

independent of whether another member is alcoholic or not. Further let p(n),

n = 1, 2,..., be the probability distribution of family size (whether a family

has an alcoholic or not) in the general population. Then the probability that

a family is of size n and has r alcoholics is

p(n) itr~r r z 0O,... ,n; n 1, 2,p. (5.3.2)

From (5.3.2), it follows that the distribution of family size in the general

population given that a family has at least one alcoholic is

(I - n)p(n) . - E(On), n = 1, 2, .... (5.3.3)

If we had chosen households at random and recorded the family sizes in

households containing at least one alcoholic, then the null hypothesis on the

excess of alcoholics in larger families could be tested by comparing the

observed frequencies with the expected frequencies under the model (5.3.3).

However, under the sampling scheme adopted, the weighted distribution of (n,r)

p(nr) rp(n) E(n) (5.3.4)(p)Wrnr rE)n

is more appropriate. If we had Information both on the family size (n) as

well as on the number of alcoholics r) in the family, we could have compared

the observed joint frequencies of (n,r) with those expected under the model

(5.3.41).

.,* * ~ % $ B
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From (5.3.4), the marginal distribution of n alone is

np(n) t E(n), n = 1, 2, ... (5.3.5)

which is used by Smart and Sprott as a model for the observed frequencies of

family sizes. It is shown in (5.3.3) that in the general population, the

distribution of family size in families with at least one alcoholic is

°.,,.-. (1 - 4*n)p(n) -. 1 -E( n

which reduces to (5.3.5) if * is close to unity. Or in other words, if the

Sprobability of an individual becoming an alcoholic is sall, then the

distribution of family size as ascertained is close to the distribution of

family size in families with at least one alcoholic in the general population.

This is not true if 0 is not close to unity.

Smart and Sprott found that the distribution (5.3.5) did not fit the

observed frequencies, which had heavier tails supporting the hypothesis under

2., . test.

An alternative to (5.3.4) is obtained by assuming that each alcoholic has a

chance 0 of being admitted to a clinic independently of other alcoholic family

members. In such a case, the probability that a family of size a has r

alcoholics and a member has been admitted to a clinic is

n ,r~n-r(l1 I_))

p(n) - (1 - 0 )r). (5.3.6)

The marginal distribution of n with the normalizing factor is then
i¢.

% .
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p(n)(1 - (1 -ne)n) - E( - (1 - )n ) (5.3.7)

n -1, 2,....

The distribution (5.3.7) involves one unknown parameter ire which needs to be

estimated in fitting to the observed frequencies of family sizes. Some

examples of distributions of the type (5.3.7) have been considered by Barrai,

Mi, Horton and Yasuda (1965). The distribution (5.3.7) is close to (5.3.5) if

irO is small.

We may also consider a more complicated model by assuming different

probabilities 7r1 and 7r2 for males and females becoming alcoholic and also

different probabilities 61 and 02 for male and female alcoholics being

referred to a clinic. In such a case, the probability of inclusion of a

*family of size n with r1 males and 31 male alcoholics, r 2 females and s2

female alcoholics is

(n (n (1i ai 1 - 1 (r2 7r 2 r 2 -32 01  (1 -l"( - )52 (5.3.8)
IT 1 2 '

which gives the marginal distribution of n as

p(n)(1 - 2 n( 2 - 7 101 - T202)n) -E E(1 - 2 "n(2 -ir 16 1 - i 2 e2 )n) (5.3.9)

which again involves one unknown parameter ( 1 81 + 202)/2. The marginal

* distribution of r1 and r2 obtained from (5.3.8) is

"p(n) - T )(1 2 + E - 2-n(2 - e r
-

,1e. (5.3.10)

where n (r1 + r2 ). If 716, and 7r292 are mall, then (5.3.10) becomes

0-.
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11+ 7 2 6 2p(n) n 1 r2 r2 02 ) " - E(n). (5.3.11)
1

If we had the joint frequencies of males and females in the observed families

Of alcoholics, we could have fitted distributions of the type (5.3.10) and

(5.3.11) to test the null hypothesis of larger number of alcoholics in larger

families.

It is seen from (5.3.10) and (5.3.11) that the distribution of (rl, r 2 ) will

not be symetric unless n1 = 282 •  This may result in excess of males or

females in observed families. Such an effect (with an excess of males) can be

seen in similar data studied by Freire-Kala and Chakraborty (1975) and Rao,

Maztmdar, Waller and Li (1973); these authors have not, however, comented on

it.

Another hypothesis considered by Smart was that the later born children have

a greater tendency to become alcoholic than the earlier born. The method used

by Smart may be somewhat confusing to statisticians. Some comments were made

by Sprott criticizing Smart's approach. We shall review Smart's analysis in

the light of the model (5.3.4). If we assume that birth order has no

* relationship on becoming an alcoholic, and the probability of an alcoholic

being referred to a clinic is independent of the birth order, then the

probability that an observed alcoholic belongs to a family with n children, r

alcoholics and has given birth order s . n is, using the model (5.3.4),

Zp(n) n r r En (-.2

a = 1,...,n; r = 1,...,n; n = 1, 2,

: " ."." ,". "."." .'_-, --.: .. .' .: .: .: ; '; -i,,'' ,' .' " ' -o " .i\ , ., ," " " ," .V 'i .,"; '. i:?/ .' 2 .''. , : I'
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Suming up over r, the marginal distribution of (n,s), the family size and

birth order, applicable to the observed distribution, is

p(n) t. 9(n) (5.3.13)

3 = 1,...,n; n = 1, 2,

where it may be recalled that p(n), n = 1, 2,..., is the distributien of

family size in the general population. Smart gave the observed bivariate

frequencies of (n,s), and since p(n) was known, the expected values could have

been computed and compared with the observed. He did something else.

From (5.3.13), the marginal distribution of birth rank is

=rp(i) -t E(n), r-- 1, 2, (5.3.14)

ir

Smart's (1963) analysis in his Table 2 is an attempt to compare the observed

distribution of birth ranks with the expected under the model (5.3.14) with

p(i) itself estimated from data using the model (5.3.1).

A better method is as follows: from (5.3.13) it is seen that for given

family size, the expected birth order frequencies are equal as computed by

Smart (1963) in Table 1, in which case individual chi squares comparing the

expected and observed frequencies for each family size would provide all the

information about the hypothesis under test. Such a procedure would be

independent of ary knowledge of p(n). But it is not clear whether a

hypothesis of the type posed by Smart can be tested on the basis of the

* available data without further information on the other alcoholics in the

family, such as their ages, sexes, etc.

* LAP- k
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- Let us consider a portion of Table 1 in Smart (1963) relating to families up

to size 4 and birth ranks up to 4.

Table 7. Distribution of birth rank(s) and family size (n)

Smart (1963, Table 1)

birth family size

... rank 1 2 3 4

0 E 0 E 0 E 0 E

1 21 21 22 16 17 13.3 11 11.75

2 10 16 14 13.3 10 11.75

3 9 13.3 13 11.75

4 13 11.75

0 = observed, E Expected

It is seen that for family sizes 2 and 3, the observed frequenocies seem to

contradict the hypothesis, and for family sizes above 3 (see Smart's Table 1),

birth rank does not have axW effect. It is interesting to compare the above

data with a similar type of data collected by the author on birth rank and

family size of the staff members in two departments at the University of

-* Pittsburgh.
%...

-. Table 8. Distribution of birth rank and family size (up to 4)
S among staff members

birth family size
rank 1 2 3 4

- 1 7 14 9 6

2 6 1 2

3 2 0

14 0

.4.
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It appears that there are too many earlier borns among the staff members

indicating that becoming a professor is an affliction of the earlier bornl It

is clear that the observed data by themselves do not enable any inference to

be drawn on the relationship between birth rank of a child and any attribute

under consideration.

6. QUADRAT SAbPLIE WITH VXSIBILITY BIAS

For estimating wildlife population density, quadrat sampling has been found

generally preferable. Quadrat sampling is carried out by first seleoting at

random a nuber of quadrats of fixed size from the region under study and

ascertaining the number of animals In each. The following assumptions are

made:

- A1 : Animals are found in groups within each quadrat and the number

C of animals X in a group follows a specified distribution.

- A2 : The number of groups N within a quadrat has a specified

distribution.

- A3 : The nuber of groups within a quadrat and the numbers of

animals within groups are independent.

Let the method of sampling be such that the probability of siahting (or

. recording) a group of x animals is w(x). If w and Nw represent the =1,a of

the nunber of animals in a group and number of groups within a quadrat as

ascertained, then we have the following results.

o.

.V '-.~*)** = ... .
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n wm% .)"~

~ (iW P(N'w miN =n) w"1- ) 1  (6.1)

where

00

w = w(x)P(X = X) (6.2)

is the visibility factor (or the probability of recording a group).

(ii) P(Nw - m) = ( w(1 - w)n'BP(N = n) (6.3)

(iii) P(e = el = x1,..., x- xm)

m
, wmP(Nw - ) "T W(xi)P(X - x1 ) (6.4)

im1

(iv) Let Sw = xw, +...+.X. Then

" ~.P(SW = Y) I P(Nw - *)p(3W = Yin) (6.5)
3=1

P(sw a Yin) z I . . P(Xj a xI ) .. P(I z x-). (6.6)

zxizy

*-. The formulae listed above are useful in many practical situations. Usually

the sighting probability is of the form

S%

w(x) 1 - ( - )x.  (6.7)

For some applications, the reader is referred to papers by Cook and Martin

(1974), and Patil and Rao (1977, 1978).

---.4



-. * • . - w "7 - rj r-r .' - g " r-wr rI r J . " J "b-W

••".-. -. ". "... . . . . . . . . . . ................. .. .

* 33

7. VAITING TIME PARADOX

0Patil (1984) reported a study conducted in 1966 by the "Institut National de

KI
k-. la Statistique et de 1'Econcmie Applique. in Morocco to estimate the mean

sojourn time of tourists. Two types of surveys were conducted one by

contacting tourists residing in hotels and another by contacting tourists at

frontier stations while leaving the country. The mean sojourn time as

reported by 3,000 tourists in hotels was 17.8 days and by 12,321 tourists at

frontier stations was 9.0. Suspected by the officials in the department of

planning, the estimate from the hotels was discarded.

It is clear that the observations collected from tourists while leaving the

country correspond to the true distribution of sojourn time, so that the

observed average 9.0 is a valid estimate of the mean sojourn time. It can be

shown that in a steady state of flow of tourists, the sojourn time as reported

by those contacted at hotels has a size biased distribution so that the

observed average will be an overestimate of the mean sojourn time. If w is a

size biased random variable, then

E(Xw)'1 U " 1  (7.1)

where u is the expected value of X, the original variable. The formula (7.1)

shows that the harmonic mean of the size biased observations is a valid

estimate of u. Thus the harmonic mean of the observations from the tourists
-0

in hotels would have provided an estimate comparable with the arithmetic mean

of the observations from the tourists at the frontier stations.

It is interesting to note that the estimate from hotel residents is nearly

SM6'
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twice the other, a factor which occurs in the waiting time paradoz (see

Feller, 1968; Patil and Rao, 1977) associated with the exponential

distribution. This suggests, but does not confirm, that the sojourn time

distribution may be exponential.

Suppose that the tourists at hotels were asked how long they had been

staying in the country up to the time of enquiry. In such a case, under the

assumption that the IC of the rx Y, the time a tourist has been in a country

up to the time of enquiry, is the same as that of the product iwR where Xw is

the size biased version of X, the sojourn time, and R is an independent Xv

with a uniform distribution on [0,1]. If F(x) is the distribution function of

X, then the of Y is

- F(y)]. (7.2)

The parameter p can be estimated on the basis of observations on Y, provided

the functional form of F(y), the distribution function of the sojourn time, is

known.

It is interesting to note that the ACf (7.2) is the same as that obtained by

Cox (1962) in studying the distribution of failure-time of a component used in

. * different machines from observations on the ages of the components in use at

the time of investigation.

8. DAMAGE MODDLS

Let N be a ZZ with probability distribution, pn' n = 1, 2, ... , and R be a

ZX such that

-
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P(R r riN n) : s(r,n). (8.1)

Then the marginal distribution of R truncated at zero is

S(1 - P)' rPns(rn), r = 1, 2, ... (8.2)
nxr

where

p = pis(o,i). (8.3)

The observation r represents the number surviving when the original

observation n is subject to a destructive process which reduces n to r with

probability s(r,n). Such a situation arises when we consider observations on

family size counting only the surviving children (R). The problem is to

determine the distribution of N, the original family size, knowing the

distribution of R and assuming a suitable survival distribution.

Suppose that N ~ P(X), i.e., distributed as Poisson with parameter A and let

R- B(.,r), i.e., binomial with parameter ir. Then

e r( )r
p, e--F1- (1 - A" ), r 1, 2, (8.4)

It is seen that the parameters A and i get confounded so that knowing the

distribution of R, we cannot find the distribution of N. Similar confounding

occurs when N follows a binomial, negative binomial or logarithm series

distribution. When the survival distribution is binomial, Sprott (1965) gives

a general class of distributions which has this property. What additional

L%~
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information is needed to recover the original distribution? For instance, if

we know which of the observations in the sample did not suffer damage, then it

is possible to estimate the original distribution as well as the binomial

parameter T.

It is interesting to note that observations which do not suffer any damage

have the distribution

u r

P CPr-" r (8.5)

which is a weighted distribution. If the original distribution is Poisson,

* then

r e - .j- " (1 -F7-) (8.6)

which is same as (8.4). It is shown in Rao and Rubin (1964) that the equality

r= Pr characterizes the Poisson distribution.

The damage models of the type described above were introduced in Rao (1965).

For theoretical developments on damage models and characterization of

- probability distributions arising out of their study, the reader is referred

-'. to Alzaid, Rao and Shanbhag (1984).

"0 9. NONRESPOISE: THE STORY OF AN EXTINCT RIVER

Sample survey practitioners define nonresponse as a missing observation or

nonavailability of measurements on a unit included in a sample. It is clear0

*'; . .*.... .. .~W . ... . °._ . .._ .. .. . .. .. . .. ... .... .. . .. . -....
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that if the missing values can be considered as a random sample from the

population under survey then the observed values constitute a representative

sample of the whole population (Rubin, 1976). Usually this is not the case

and special techniques are developed in sample surveys to cope with such

situations.

In general, nonresponse poses serious issues such as the problem of broken

skulls not providing direct measurements on capacity (see Section 4 of this

paper). More complex cases are as follows.

For instance, we may try to estimate the underground resources in a given

region by making borings at a randomly chosen set of points and taking some

measurements. But it may so happen that borings cannot be made at some chosen

points due to some reasons such as the presence of rocks. The measurements at

such points may be of a different type from the rest in which case the

observed sample will not be a representative sample from the whole region.

Such a problem arose in an investigation by geologists at the Indian

Statistical Institute to estimate the mean direction of flow of an extinct

river of geological times in a certain region (see Sengupta, 1966;

J. S. Rao and Sengupta, 1966). The geologists collected a series of

observations on direction cosines of flow (two dimensional vector data), which

seemed ideal for an application of Fisher's (1953) distribution and the

associated theory for estimation of the mean direction of flow. Then the

question arose as to what the hypothetical population was from which the

observations could be considered as a random sample. It appeared that the

measurements on direction cosines could not be made at any choen oin, but

only at certain points where there was rock formation with some markings known
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as "outcrops.* The geologists walked along the region under exploration and

made measurements wherever they came across outcrops. If the outcrops had

been uniformly distributed over space, then it might have been possible to

define a population of which the observations made by the geologists could be

a representative sample. The locations at which observations were made when

plotted on a topographical map of the region showed an unequal distribution of

outcrops in different areas of the region indicating the nonrandom nature of

the occurence of outcrops. In such a case the estimate of mean direction

assuming that each observation is an independent sample with a common

expectation will be biased. In order to minimize the bias in estimation, the

* following method of estimation was adopted. A square lattice was imposed on

the topographical map and the measurements in each grid were replaced by their

average. Then a simple average of these averages was taken as an estimate of

the mean direction of flow. This estimate differed somewhat from the average

of all the measurements and was considered to have less bias.

This study points out the need for a re-examination of data on directions of

rock magnetism collected by geologists and analysed by Fisher (1953) who

developed a special theory for that purpose. If the outcrops at which

measurements of direction are possible are not uniformly distributed over

-: space, then there will be some difficulty in interpreting the observed mean

- direction as an estimate of some specific parameter.

-..

10. CONCLUSIONS

Some of the broad conclusions that emerge from the discussion of the live

examples in the paper are as follows:

'.,5e.,",.J ,- ,,, ',..-.,';
"
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Specification or the choice of a model is of great value in data analysis.

An appropriate specification for given data can be arrived at on the basis of

past experience, information on the stochastic nature of events, a detailed

knowledge of how observations are ascertained and recorded, and an exploratory

analysis of current data itself using graphical displays, preliminary tests

and cross validation studies.

Inaccuracies in specification can lead to wrong inference. It is therefore

" . worthwhile to review the data under different possible specifications (models)

to determine how variant the conclusions could be.

S
W hat population does an observed sample represent? What is the widest

possible universe to which the conclusions drawn from a sample apply? The

. answers depend on how the observations are ascertained and what the

* deficiencies in data are in terms of nonresponse, measurement errors, and

contamination.

Every data set has its own unique features which may be revealed in initial

scrutirW of data and/or during statistical analysis, which may have to be

taken into account in interpreting data. Routine data analysis based on text

* book methods or software packages may be misleading.

Generally in scientific investigations, a specific question cannot be

answered without knowing the answers to several other questions. It often

pays to analyse the data to throw light on a broader set of relevant and

related questions.

-JW



What data should be collected to answer specific questions? Lack of

information on certain aspects may create undue complications in applying

statistical methods and/or restrict the nature of conclusions drawn from

available data. Attempts should be made to collect information on concomitant

variables to the extent possible, whose use can enhance the precision of

estimators of unknown parameters, and provide broader validity to statistical

inference.
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